1cell Lithium-ion/Lithium-polymer battery protection IC MM3645 Series

Outline

MM3645 series are protection ICs for Lithium-ion or Lithium-polymer secondary battery using high voltage CMOS process. They protect the battery pack/system from overcharge, overdischarge, and overcurrent, etc. by controlling FET SW.

They realize overcurrent detection with high accuracy and improved temperature dependence by using an external chip resistor. In addition, by using charging off mode, it reduces the off current of system and prevents Lithium-ion battery from discharging when the system is off.

Features

(Unless otherwise specified, Topr=+25°C)

(1) Range and accuracy of detection	1 / releas	se voltage			
 Overcharge detection voltage 		3.6V to 5.0V, 5mV steps	Accuracy±20mV		
			Accuracy±25mV (Topr=-20 to +60°C)		
 Overdischarge detection voltage 		2.0V to 3.0V, 50mV steps	Accuracy±35mV		
Discharging overcurrent detection vo	oltage	20mV to 300mV, 1mV steps	Accuracy±15%		
Charging overcurrent detection volta	ge	–20mV to –300mV, 1mV steps	Accuracy±15%		
Short detection voltage		0.45V to 0.9V, 50mV steps	Accuracy±100mV		
(2) Release condition from each prot	tection r	node			
Overcharge release condition		"VDD < Overcharge release voltage	e" and "Connecting load (V $- > 0.4$ V)"		
Overdischarge release condition		"VDD > Overdischarge release voltage" and "Connecting charger(V– < 0.2 V)"			
Discharging overcurrent release cond	dition	"Removing load (V- < 0.2V)"			
Charging overcurrent release conditi	on	"Connecting load (V- > 0.4V)"			
(3) Range of detection delay time					
Overcharge detection delay time		Selection from 0.25s, 0.5s, 1.0s			
Overdischarge detection delay time		Selection from 20ms, 24ms, 96ms, 125ms			
Discharging overcurrent detection detection	elay time	Selection from 8ms, 12ms, 16ms, 2	20ms, 48ms		
Charging overcurrent detection delay time		Selection from 8ms, 12ms, 16ms, 20ms, 48ms			
Short detection delay time		250µs standard			
(4) 0V battery charge function		Selection from "Prohibition" o	r "Permission"		
(5) Forcible discharge OFF mode		CNT>VDD-0.4 : DOUT=L Discharge=OFF			
		CNT <vss-0.4 :="" discharg<="" dout="H" td=""><td>e=ON</td></vss-0.4>	e=ON		
(6) Low current consumption					
Normal mode	Тур. 3.0µ	μΑ, Max. 5.5μΑ			
●Stand-by mode	Max. 0.1	μΑ			
(7) Absolute maximum ratings					
●VDD pin	VSS-0.3	V to +12V			
●COUT pin and V- pin	VDD-28	V to VDD+0.3V			
●DOUT, CS and CNT pin	VSS-0.3	V to VDD+0.3V			
Storage temperature	–55 to +	125°C			
Operation temperature	-40 to +	85°C			

<sup>Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.</sup>

Pin Assignment

Top view	Pin No	Function		
TSOP-8A		i dilotori		
	1	Discharge FET control terminal		
	2	Charge FET control terminal		
DOUT 1 8 VSS	3	Charger negative voltage input terminal		
COUT 2 7 VDD	4 Delay short terminal			
V- 3 6 CS	5 Discharge FET mode control terminal			
DS 4 5 CNT	6	Overcurrent detection input terminal.		
	7	Positive power supply voltage input terminal		
	8	Negative power supply voltage input terminal		

Selection Guide

		Detection / Release voltage								
Product name	Package	Overcharge detection voltage [V]	Covercharge release	Coverdischarge detection voltage[V]	Coverdischarge release voltage [V]	Discharging overcurrent detection voltage [mV]	Charging overcurrent detection voltage [mV]	Short detection voltage [V]	0V battery charge function	Delay time combination *1
		Vdet1	Vrel1	Vdet2	Vrel2	Vdet3	Vdet4	Vshort		
MM3645A01VRE	TSOP-8A	4.430	4.330	2.300	2.300	37.0	-25.0	0.9	Permission	1
MM3645A02VRE	TSOP-8A	4.405	4.305	2.500	2.500	37.0	-37.0	0.9	Permission	1
MM3645B01VRE	TSOP-8A	4.430	4.330	2.400	2.400	43.0	-25.0	0.9	Prohibition	1
MM3645B02VRE	TSOP-8A	4.430	4.330	2.400	2.400	43.0	-25.0	0.6	Prohibition	1

(TSOP-8A ··· 3,000pcs/Reel)

*1 Delay time combination

		1
Overcharge detection delay time	tVdet1	1.0s
Overdischarge detection delay time	tVdet2	125ms
Discharging overcurrent detection delay time	tVdet3	16ms
Charging overcurrent detection delay time	tVdet4	8ms
Short detection delay time	tshort	250µs

Please inquire to us, if you request a rank other than the above.

<sup>Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.</sup>

Application Circuit

- R1 and C1 stabilize a supply voltage fluctuation. However, the detection voltage rises by the current consumption of IC when R1 is too large, and the value of R1 is adjusted to 1kohm or less. Moreover, adjust the value of C1 to 0.01uF or more to do the stability operation, please.
- R1 and R2 resistors are current limit resistance if a charger is connected reversibly or a high-voltage charger that exceeds the absolute maximum rating is connected. R1 and R2 may cause a power consumption will be over rating of power dissipation, therefore the "R1+R2" should be more than 1kohm. Moreover, if R2 is too enlarged, the charger connection release cannot be occasionally done after the overdischarge is detected, so adjust the value of R2 to 10kohm or less, please.
- Rsns is sense resistance for detect charge current and discharge current. If R3 is too enlarged, the power loss increases. Moreover, the power might exceed a dissipation of resistance by the overcurrent, please select R3 according to the battery spec, after confirming the characteristic.
- · Current threshold of discharging overcurrent detection and short detection (Idoc, Ishort) are expressed in the following equations.

Idoc = Vdet3 / Rsns Ishort = Vshort / (Rsns + 2Ron) *Ron : ON resistance of CFET and DFET

- Current threshold of charging overcurrent detection (Icoc) is expressed in the following equation.
 Icoc = Vdet4 / Rsns
- · C4 has removed the exogenous noise to CS terminal. Similarly R3 and C5 have removed the exogenous noise to a CNT terminal. Please select required value in consideration of the system characteristic, and arrange near the each terminal.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

- C2 and C3 have effect that the system stability about voltage ripple and exogenous noise. Please decide that these capacitors should be inserted or not, where should be inserted, and capacitance value in consideration of the system characteristic.
- In the over discharge mode V- terminal pulled up to VDD by RpuVM. If charger is connected, Iv- flow to Pterminal from P+ and the voltage drop (△V) arises in R1. Therefore the cell voltage (Vcell) at overdischarge release is expressed in the following equation.
 - Vcell = Vrel2 + ∠V
 - = Vrel2 + R1 *Iv-
 - = Vrel2 + R1 *Vchg / (R1 + RpuVM + R2)

* Vchg : Charger voltage

Symbol	Part	Min.	Тур.	Max.	Unit
R1	Resistor		330	1k	Ω
C1	Capacitor	0.01	0.1	1.0	μF
R2	Resistor		2.2k	10k	Ω
Rsns	Sense resistor				mΩ
C2	Capacitor		0.1		μF
R3	Resistor	1k		100k	Ω
C3	Capacitor		0.01		μF
C4 C5	Capacitor		0.1		μF
DFET CFET	Nch MOS FET				