150mA LDO with output voltage switching function Monolithic IC MM3532T Series

Outline

This IC is a multi-out*1 150mA regulator with output voltage switching function.

Instead of conventional 2 power supply structure for the 1.8 V ⇔ 3.3 V output voltage of the SDXC card, it is now possible to structure with 1 product by the output switching CV terminal, realizing simplification and low power consumption of the system. It can also support the low power consumption type application by arbitrary voltage setting.

There are 2 types of output current, 150mA(MM3532T)/500mA(MM3532A), supporting wide range of applications.

The package has adopted small and high heat dissipation type SSON-6A (1820 size) that is appropriate for high density implementation.

*1 Multi-Out: A function to switch the output voltage value (Vout) between Vout- H / Vout- L by switching the voltage

Low/High applied to the output voltage control terminal (CV).

Vout can be set to Vout- H by setting the CV terminal to Low, and Vout can be set to Vout- L by setting

the CV terminal to High.

In case of SDXC card support, it will be Vout- H = 3.3 V and Vout- L = 1.8 V.

Features

1. Output current 150mA 2. No load input current 50µA typ. 3. Input current (OFF) 0.1µA typ.

Output voltage accuracy ±1% (±15mV, V_{OUT}<1.5V)

5. Dropout voltage 0.33V max. (Iout=100mA/CV=H) 0.18V max. (Iout=100mA/CV=L)

6. Line regulation 0.01%/V typ.

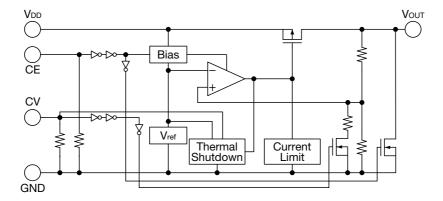
7. Load regulation 20mV typ.(I_{OUT}=1~100mA) 8. Protect Function Overcurrent protection

Over Temperature protection

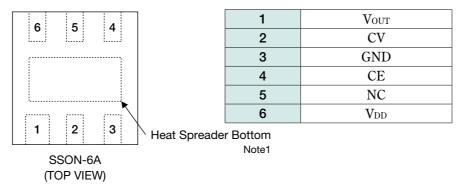
9. Output Capacitor 1.0µF (Ceramic)

Package

SSON-6A


Applications

- 1. Flat TVs
- 2. DVD/Blu-ray recorders
- 3. Digital cameras, Digital video cameras
- 4. Mobile phones


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Block Diagram

Pin Assignment

Note1: Heat Spreader Bottom with GND.

Pin Description

Pin No.	Pin name	Functions				
1	Vout	Output pin				
2	CV	Output Control pin CE OUTPUT L Vo-H H Vo-L When the voltage of the terminal CV is higher than the voltage of the terminal VDD, it becomes test mode. In that case, please note that there is a possibility that the output voltage is turned off.				
3	GND	GND pin				
4	CE	ON/OFF-Control pin CE OUTPUT L OFF H ON Connect CE pin with VDD pin, when it is not used.				
5	NC	No connection				
6	$ m V_{DD}$	Voltage-Supply pin				

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Storage Temperature	Tstg	-55~+150	°C
Junction Temperature	T _{jMAX}	150	°C
Supply Voltage	$ m V_{DD}$	-0.3~+6.5	V
CE input Voltage	Vce	-0.3~+6.5	V
CV input Voltage	Vcv	-0.3~VDD+0.3	V
Output Voltage	Vout	-0.3~+6.5	V
Output Current	Iomax	500	mA
Power Dissipation	Pd	1250(Note2)	mW

Note2: JEDEC51-7 standard 114.3 × 76.2 × 1.6mm

Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Operating Ambient Temperature	Topr	-40~+85	°C
Operating Voltage	Vop	1.6~6.0	V
Output Current	Iop	0~150	mA

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Electrical Characteristics 1 (Except where noted otherwise VDD=VOUT(TYP.)+1V, VCE=VCV=VDD, Ta=25°C)

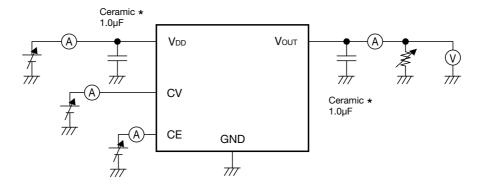
Item	Symbol	bol Measurement conditions		Тур.	Max.	Units
Input Current(OFF)	Iddoff	V _{CE} =0V Vout (TYP.)+1.0V≦V _{DD} ≤6.0V		0.1	1.0	μА
No-Load Input Current	Idd	Iout=0mA		50	80	μA
Output Voltage	37	$I_{OUT}=10mA \text{ (V}_{OUT} \ge 1.5\text{V)}$	×0.99		×1.01	V
Output voitage	Vout	Iour=10mA (Vour≤1.5V)	-0.015		+0.015	V
Line Regulation	VLINE	V_{OUT} (TYP.)+0.5 $V \le V_{DD} \le 5.0V$ I_{OUT} =100mA		0.01	0.20	%/V
Load Regulation	VLOAD	1mA≤Iouт≤100mA		20	50	mV
Dropout Voltage	Vio	Please refer to another page				V
Output Short-Circuit Current (Note3)	Ishort	Vout=0V		60		mA
Vout Temperature Coefficient (Note3)	∠Vout/∠Top	Iouт=10mA, −40≦Top≦85°C		±100		ppm/°C
Ripple Rejection (Note3)	RR	f=1kHz, Vripple=0.5V, I _{OUT} =100mA		70		dB
CE High Threshold Voltage	VCEH		1.5		6.5	V
CE Low Threshold Voltage	VCEL		0		0.3	V
CE Pin Current (Note3)	Ice			0.5		μA
CV High Threshold Voltage (Note4)	Vcvh		1.5		V_{DD}	V
CV Low Threshold Voltage	Vcvl		0		0.3	V
CV Pin Current (Note3)	Icv			0.5		μA
Thermal ShutDown Detect Temperature (Note3)	Tsd			150		°C
Thermal ShutDown Release Temperature (Note3)	Tsr			125		°C
Output NMOS ON Resistance (Note3)	R _{DON}			60		Ω
Output ON Resistance	Ron	I _{OUT} =100mA, CV=GND V _{DD} =V _{OUT} (TYP.)-0.2V		1.3	1.8	Ω

Note3: The parameter is guaranteed by design.

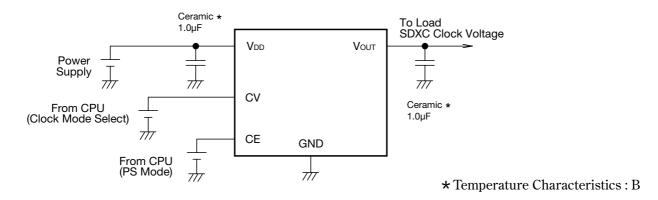
Note4: When the voltage of the terminal CV is higher than the voltage of the terminal VDD, it becomes test mode.

In that case, please note that there is a possibility that the output voltage is turned off.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


Electrical Characteristics 2 (Except where noted otherwise VDD=VOUT(TYP.)+1V, VCE=VCV=VDD, Ta=25°C)

		Item								
	Model No.	Outpu	ıt Voltage	e H		Output Voltage L				
		V _{оит} - H (V)				V _{OUT} - L (V)				
		Measurement Conditions	Min.	Тур.	Max.	Measurement Conditions	Min.	Тур.	Max.	
	MM3532T00	IOUT=10mA CV=GND	3.267	3.300	3.333	IOUT=10mA CV=V _{DD}	1.782	1.800	1.818	


	Item								
Model No.	Dropout	put Volta	age H		Dropoutput Voltage L				
wiodei ivo.	Vio - H (V)				Vio - L (V)				
	Measurement Conditions	Min.	Тур.	Max.	Measurement Conditions	Min.	Тур.	Max.	
MM3532T00	Iout=100mA CV=GND		0.13	0.18	Iout=100mA CV=V _{DD}		0.16	0.33	

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Measuring Circuit

Typical Application Circuit

(Reference example of external parts)

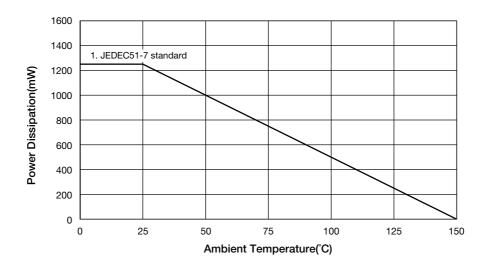
Ceramic capacitor 1.0µF · Output capacitor Ceramic capacitor 1.0µF · Input capacitor

- · We shall not be liable for any trouble or damage caused by using this circuit.
- · In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

· Note

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- Due to restrictions on the package power dissipation, the output current value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large or the voltage between Input and Output is high.
- The output capacitor is required between output and GND to prevent oscillation.
- 4. The ESR of capacitor must be defined in ESR stability area. It is possible to use a ceramic capacitor without ESR resistance for output. The ceramic capacitor must be used more than 1.0µF and B temperature characteristics.
- 5. The wire of VDD and GND is required to print full ground plane for noise and stability.
- 6. The input capacitor must be connected a distance of less than 1cm from input pin.
- It is able to oscillation when you use the capacitor with intense capacitance change such as micro. Please evaluate IC in the set.
- 8. In case the output voltage is above the input voltage, the overcurrent flow by internal parastic diode from output to input. In such application, the external bypass diode must be connected between output and input
- There is a possibility that IC generates heat when the output terminal is short-circuited. However, the thermal shutdown circuit operates, and it will do operation that protects IC. The thermal shutdown circuit is designed only to shut the IC off to prevent thermal runaway. Do not continue to use the IC in an environment where the operation of this circuit is assumed. The characteristic changes depending on the substrate condition. Please evaluate IC in the set.

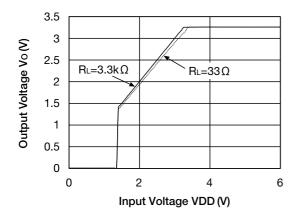

About Power Dissipation

The Power dissipation change if board to mount IC change because radiative heat fix at board. It is reference data below, Evaluate IC in the set.

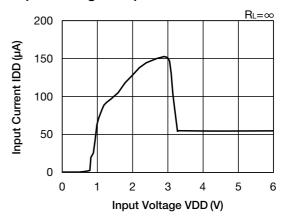
1. JEDEC51-7 standard

Board size 114.3mm×76.2mm t=1.6mm Copper foil area 80%

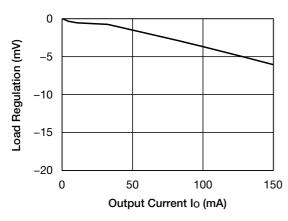
Power dissipation 1250mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

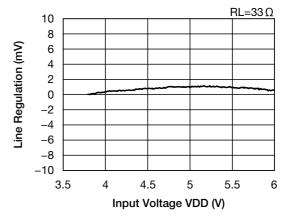

It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate).

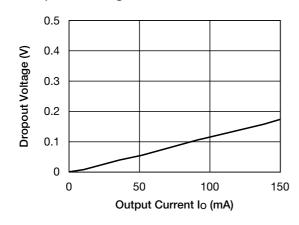
By increasing these copper foil pattern area of PCB, Power dissipation improves.

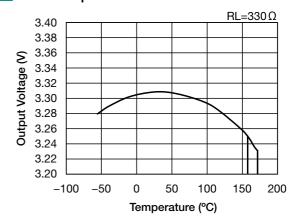

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Typical Characteristics (Vout=3.3V) (Except where noted otherwise Vdd=Vout(TYP.)+1V, VcE=Vdd, Vcv=GND, Ta=25°C)

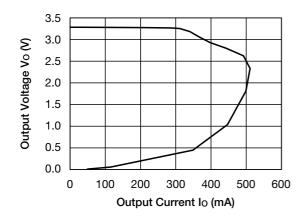

Input Voltage - Output Voltage


Input Voltage - Input Current

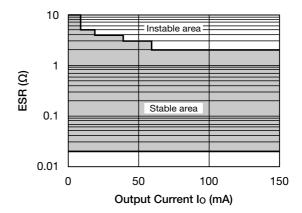

Load Regulation


Line Regulation

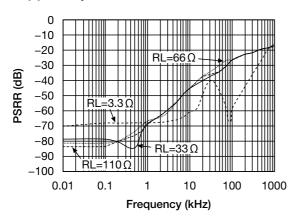
Dropout Voltage



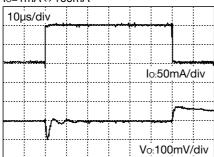
Vout Temperature Coefficient

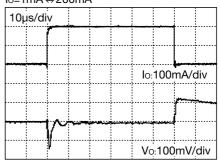


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

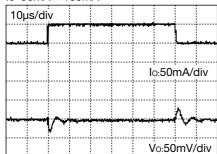

Current Limit

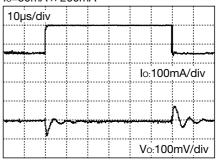
ESR stable area

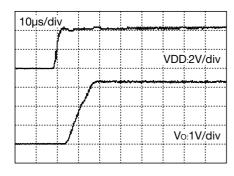

Ripple Rejection

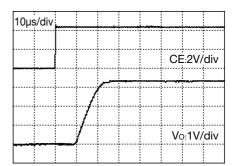

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Load Transient response (Cin=Co=1.0 μ F)

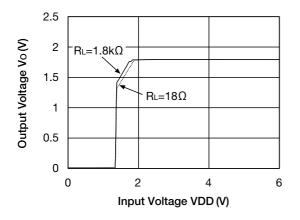

lo=1mA⇔100mA

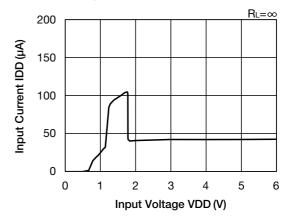

lo=1mA⇔200mA


lo=50mA⇔100mA

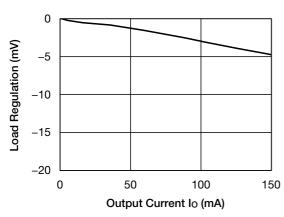

lo=50mA⇔200mA

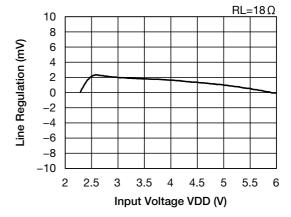
Input rise characteristics

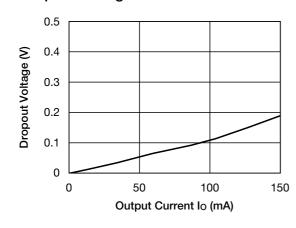

CE rise characteristics

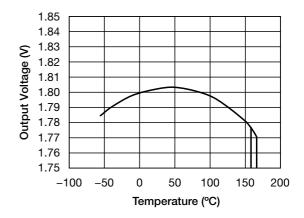

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Typical Characteristics (Vout=1.8V) (Except where noted otherwise Vdd=Vout(TYP.)+1V, VcE=Vdd, Vcv=GND, Ta=25°C)

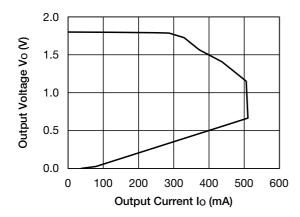

Input Voltage - Output Voltage


Input Voltage - Input Current

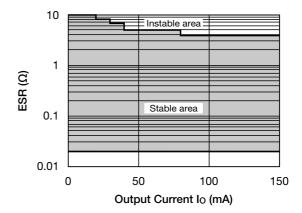

Load Regulation


Line Regulation

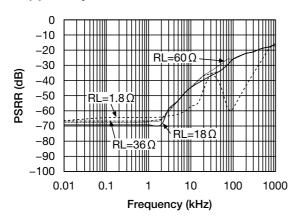
Dropout Voltage



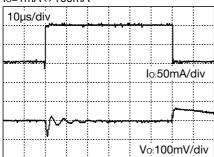
Vout Temperature Coefficient

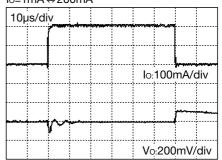


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

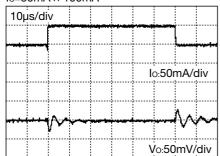

Current Limit

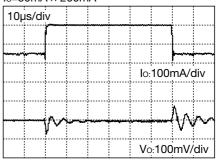
ESR stable area

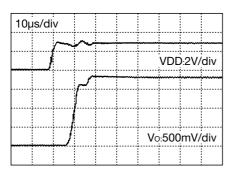

Ripple Rejection

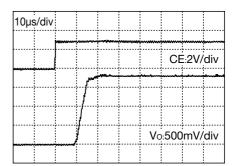

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Load Transient response (Cin=Co=1.0 μ F)

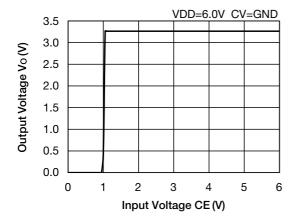

lo=1mA⇔100mA

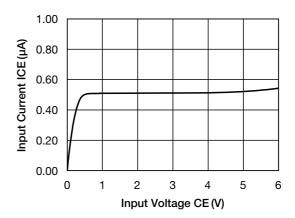

lo=1mA⇔200mA


lo=50mA⇔100mA

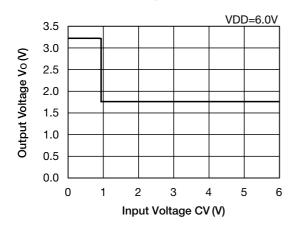

lo=50mA⇔200mA

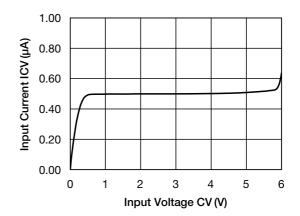
Input rise characteristics


CE rise characteristics

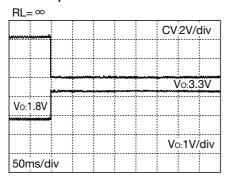

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Typical Characteristics (Vout=3.3V-1.8V) (Except where noted otherwise Vdd=Vout(TYP.)+1V, VcE=Vdd, Vcv=GND, Ta=25°C)

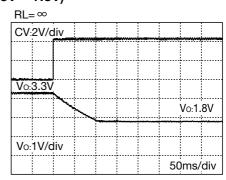

CE Threshold Voltage

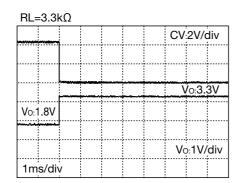

Input Voltage - Input Current ICE

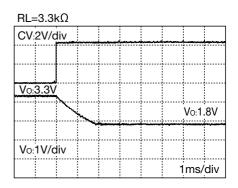
CV Threshold Voltage

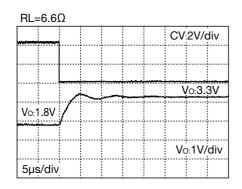


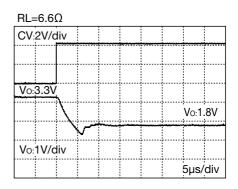
Input Voltage - Input Current ICV

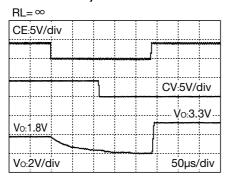


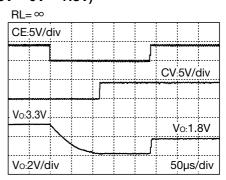

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

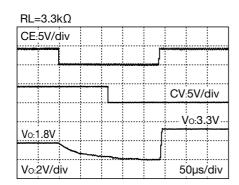

CV Transient response $(V_0=1.8V\to 3.3V)$

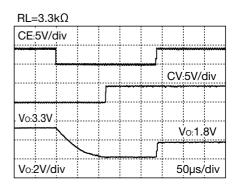


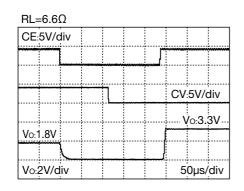

CV Transient response $(V_0=3.3V\rightarrow 1.8V)$

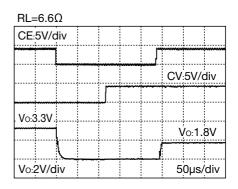





Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


CV/CE Transient response $(V_0=1.8V\to 0V\to 3.3V)$




CV/CE Transient response $(V_0=3.3V\to 0V\to 1.8V)$

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.