3 to 5cells Li-ion/Li-polymer battery protection IC MM3575 Series

Outline

The MM3575 series are protection IC using high voltage CMOS process for overcharge, overdischarge and overcurrent protection of the rechargeable Lithium-ion or Lithium-polymer battery. The overcharge, overdischarge, discharging overcurrent, charging overcurrent, cell balance and V5 to V3 pin disconnect of the rechargeable 3 to 5cell Lithium-ion or Lithium-polymer battery can be detected. By using cascade connection, it is also possible to protect 6 or more cells rechargeable Lithium-ion battery. And the regulator can be constructed by using external Nch MOS FET. The internal circuit of IC is composed by the voltage detector, the reference voltage source, delay time control circuit, and the logical circuit, etc.

Features

(Unless otherwise specified, Topr=+25°C)

(1) Range and accuracy of detection/release voltage

· · /	Thange and decardey of deceeter, release	, ronago		
	Overcharge detection voltage	3.6V to 4.5V, 5mV steps	Accuracy±	25mV (Topr=±0 to +50°C)
	Overcharge release voltage	3.4V to 4.5V, 50mV steps	Accuracy±	:50mV
	Overdischarge detection voltage	2.0V to 3.0V, 50mV steps	Accuracy±	:80mV
	Overdischarge release voltage (Note4)	2.0V to 3.0V, 50mV steps	Accuracy±	:100mV
	Discharging overcurrent detection voltage 1	30mV to 300mV, 5mV steps	Accuracy±	:15mV (typ 50mV~)
	Discharging overcurrent detection voltage 2	Twice or 4 times of	Accuracy±	15%
		discharging overcurrent 1 (Note1)		
	Short detection voltage	4 or 8 times of	Accuracy±	:100mV
		discharging overcurrent 1 (Note1)		
	Charging overcurrent detect voltage	–300mV to –20mV, 5mV steps	Accuracy±	:10mV
	Cell balance detection voltage	3.6V to 4.5V, 5mV steps	Accuracy±	30mV (Topr=±0 to +50°C)
(2)	Range of detection delay time			
	Overcharge detection delay time	Selection from 0.25s, 1.0s, 1.2s, 4.1s	5	Accuracy±25%
	Overcharge release delay time	Selection from 10ms, 24ms, 48ms, 1	00ms	Accuracy±25%
	Overdischarge detection delay time	Selection from 0.25s, 1.0s, 1.2s, 4.1s	6	Accuracy±25%
	Overdischarge release delay time	Selection from 4ms, 8ms, 12ms, 24m	ns	Accuracy±25%
	Discharging overcurrent detection delay time1	Setting by a capacitor of COC pin. (Vote2)	Accuracy±30%
	• Discharging overcurrent detection delay time2	Setting by a capacitor of COC pin. (N	Vote2)	Accuracy±30%
	Short detection delay time	Selection from 100µs, 200µs, 300µs		Accuracy±50%
	Discharging overcurrent release delay time	Setting by a capacitor of COC pin. (N	Vote2)	Accuracy±30%
	Charging overcurrent detection delay time	Setting by a capacitor of COC pin. (Vote2)	Accuracy±30%
	Charging overcurrent release delay time	Setting by a capacitor of COC pin. (Vote2)	Accuracy±30%
	Disconnect detection delay time	Selection from 25ms, 50ms, 100ms		Accuracy±25%
	Disconnect release delay time	Selection from 1024ms, 2048ms, 40	96ms	Accuracy±25%
	Cell balance detection delay time	Selection from 0.1s, 0.25s, 0.5s (Not	e3)	Accuracy±25%
	Cell balance release delay time	Selection from 4ms, 8ms, 12ms		Accuracy±25%
	Note1: Optional function			
	Note2 : Since the capacity is the same	, each delay times will change when a	a value is ch	anged without short

- detection delay time.
- Note3 : Cannot do shorter than disconnect detection delay time.
- Note4 : The discharge state release method can choose a voltage release and a load open.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

(3) Protected operation can be detectof V5~V1 pin disconnection When any of V5 to V1 pin open, it will detect disconnection and charge and discharge prohibited state. Protection mode of disconnection can be chosen from three, prohibition of charge, prohibition of discharge and prohibition of charge and discharge (Optional) The release from disconnection protection is done by disconnection point being connected. (4) The setting for three cell, for four cell, and for five cell protection can be set with the SEL pin. (5) The charge and discharge of the battery can be controlled with SDC pin and SOC pin. Selection from "Prohibition" or "Permission" (6) 0V battery charge function (7) Power save mode built-in It is possible to make it shift to low consumption current mode arbitrarily. Transition of power save mode is used by SDC,SOC pins. It shifts to a power save mode by making SDC and SOC pin into a VSS level. (8) Regulator function built-in Connecting drain of external Nch MOS FET gate to DRIVE pin and source to REG_IN pin, it can operate as a regulator. The regulator operates independently with protected operation, such as overcharge detection. Regulator voltage can be chosen at 0.1V step among 3.3V to 5.0V. (9) Low current consumption ●VDD pin current consumption (Vcell=4.3V) Typ. 25.0µA, Max. 35.0µA VDD pin current consumption (Vcell=3.5V) Typ. 20.0µA, Max. 30.0µA VDD pin current consumption (Vcell=2.0V) Typ. 10.0µA, Max. 15.0µA VDD pin current consumption at power save1 (Vcell=3.5V) Typ. 12.0µA, Max. 16.0µA VDD pin current consumption at power save2 (Vcell=3.5V) Typ. 4.0µA, Max. 6.0µA ●V5 pin current consumption (Vcell=4.3V) Typ. 4.0µA, Max. 6.0µA ●V5 pin current consumption (Vcell=3.5V) Typ. 2.0µA, Max. 3.0µA ●V5 pin current consumption (Vcell=2.0V) Typ. 1.0µA, Max. 1.5µA ●V5 pin current consumption at power save (Vcell=3.5V) Max. 0.05µA (10) Input current ●V4 pin input current (Vcell=3.5V) Max. 1.0µA ●V3 pin input current (Vcell=3.5V) Max. 1.0µA ●V2 pin input current (Vcell=3.5V) Max. 1.0µA ●V1 pin input current (Vcell=3.5V) Max. 1.0µA (11) Absolute maximum ratings ●VDD, CS1, CS2 pin VSS-0.3V to VSS+30V ●V5 pin V4-0.3V to VDD+0.3V Voltage between the input terminals -0.3V to +10V VDD-30V to VDD+0.3V OV, VM1, VM2 pin OUT1 to 5 pin Vn-1-0.3V to VDD+0.3V ●DCHG, SEL, SDC, SOC pin VSS-0.3V to VDD+0.3V ●DRIVE, REG_IN pin VSS-0.3V to VDD+0.3V

(12) Recommended operating conditions

Storage temperature

 Operation temperature 	–40 to +85°C
Supply Voltage	VSS+3.5V to +22.5V

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

-55 to +125°C

Pin Assignment

Top view VSOP-24A	Pin No.	Function				
	1	The input terminal of the power supply of IC.				
	2	The control terminal of output over charge detection. ISOC <isocl <math="">\rightarrow OV=High impedance</isocl>				
	3	The control terminal of output over discharge detection. ISDC <isdcl <math="">\rightarrow DCHG=Low</isdcl>				
	4	Input terminal connected to charger negative voltage. Detected charger connection.				
	5	Charge control output terminal. Output type is Pch open drain. Normal mode → "High" Overcharge mode → "High impedance"				
	6	Input terminal connected to discharge voltage. Detected load connection.				
	7	Discharge control output terminal. Output type is CMOS. Normal mode → "High" Overdischarge mode → "Low"				
VDD 1 0 24 V5 soc 2 23 0UT5	8	A terminal which sets delay time of discharging overcurrent and charging overcurrent detection/release. It is able to set delay time by connecting a condenser between VDD and COC terminals.				
SDC 3 22 V4 VM2 4 21 OUT4 OV 5 20 V3	9	Input of overcurrent detection. Detected overcurrent by sense resistor between CS1 pin and CS2 pin. And then the DCHG terminal outputs low level, and it protects from large current discharging.				
DCHG 7 18 V2	10	Common terminal of overcurrent detection circuit.				
COC 8 177 OUT2 CS1 9 16 V1 CS2 10 15 OUT1	11	The drive terminal of FET for regulator. Connect to gate of FET				
DRIVE 111 14 VSS REG_IN 12 13 SEL	12	The input terminal of regulator voltage. Connect to source of FET				
	13	This pin is for changing function for 3cell in series or 4cell in series , 5cell in series. Connect VSS→5cells in series Connect V2→4cells in series Connect VDD→3cells in series				
	14	The input terminal of the negative voltage of V1 cell. The input terminal of the ground of IC.				
	15	V1 cell balance control output terminal. Output type is CMOS. Normal mode \rightarrow "Low" Cell balance detect mode \rightarrow "High"				
	16	The input terminal of the positive voltage of V1 cell, and the negative voltage of V2 cell.				
	17 V2 cell balar Normal mod	V2 cell balance control output terminal. Output type is CMOS. Normal mode \rightarrow "Low" Cell balance detect mode \rightarrow "High"				
	18	The input terminal of the positive voltage of V2 cell, and the negative voltage of V3 cell.				
	19	V3 cell balance control output terminal. Output type is CMOS. Normal mode → "Low" Cell balance detect mode → "High"				
	20	The input terminal of the positive voltage of V3 cell, and the negative voltage of V4 cell.				
	21	V4 cell balance control output terminal. Output type is CMOS. Normal mode → "Low" Cell balance detect mode → "High"				
	22	The input terminal of the positive voltage of V4 cell, and the negative voltage of V5 cell.				
	23	V5 cell balance control output terminal. Output type is CMOS. Normal mode \rightarrow "Low" Cell balance detect mode \rightarrow "High"				
	24	The input terminal of the positive voltage of V5 cell.				

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Selection Guide

Γ													
	Product name (MM3575***WBH)	Overcharge detection voltage [V]	Overcharge release voltage [V]	Overdischarge detection voltage[V]	Overdischarge release voltage [V]	Discharging overcurrent detection voltage 1 [V]	Discharging overcurrent detection voltage 2 [V]	Short detection voltage [V]	Charging overcurrent detection voltage [mV]	Cell balance detection voltage [mV]	0V battery charge function	Protection mode of disconnection	
		VDET1	VREL1	VDET2	VREL2	VDET3-1	VDET3-2	VSHORT	VDET4	VDET_CB			
	MM3575A02WBH	4.250	4.175	2.800	2.900	0.100	0.200	0.400	-0.020	4.180	Prohibition	Prohibition of charge and discharge	
	MM3575A08WBH	4.250	4.100	2.600	3.200	0.090	0.180	0.360	-0.030	4.180	Prohibition	Prohibition of charge and discharge	

	Detection / Release delay time													
Product name (MM3575***WBH)	Overcharge detection delay time [sec]	Overcharge release delay time [msec]	Overdischarge detection delay time [sec]	Overdischarge release delay time [msec]	Discharging overcurrent detection delay time 1 [msec]	Discharging overcurrent detection delay time 2 [msec]	Discharging overcurrent release delay time [msec]	Short detection delay time [usec]	Charging overcurrent detection delay time [msec]	Charging overcurrent release delay time [msec]	Disconnect detection delay time [msec]	Disconnect release delay time [msec]	Cell balance detection delay time [msec]	Cell balance release delay time [msec]
	tvdet1	tvrel1	tvdet2	tvrel2	tvdet3-1	tvdet3-2	tvrel3	t SHORT	tvdet4	tvrel4	tvdet5	tvrel5	tvdet CB	tvrel_cb
MM3575A02WBH	1.0	100	1.0	4.0	10.0	2.0	4.0	200	1024	128	200	4096	256	8.0
MM3575A08WBH	1.0	100	2.0	4.0	1536	60.0	4.0	200	100	128	200	4096	256	8.0

Please inquire to us, if you request a rank other than the above.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Application Circuit

\cdot 5 cells protection circuit.

Explanation of external parts

Parts name	Roles of parts					
$Rv_{DD} \cdot Rv_5 \cdot Rv_4 \cdot Rv_3 \cdot Rv_2 \cdot Rv_1$	CR low-pass filter to stabilize a supply ripple of VDD pin · V5pin · V4pin · V3pin · V2pin · V1pin.					
$\hline C_{VDD} \cdot C_{V5} \cdot C_{V4} \cdot C_{V3} \cdot C_{V2} \cdot C_{V1}$						
$ROUT1 \cdot ROUT2 \cdot ROUT3 \cdot ROUT4 \cdot ROUT5$	Resistance of discharging during cell balance control.					
$R_{SEL} \cdot R_{CS1} \cdot R_{CS2} \cdot R_{VM1} \cdot R_{VM2}$	Resistor to protect terminal.					
Rsdc · Rsoc	Current limitation resistor. (The voltage signal is converted into the current signal by this resistor at the cascading connection.)					
Ccoc	Capacitor to sets discharging overcurrent, charging overcurrent detection/release dead time.					
Rsense	Sense resistance to observe charging/discharging current.					
$R_{DG1} \cdot R_{DG2}$	Resistor for preventing the gate destruction due to parasitic oscillation.					
Rovi	Pulldown resistance of OV pin.					
Rreg1	Resistance of regulator for phase compensation.					
Rreg2	Resistance of current control when Q4 shorted out.					
CREG1	Capacity of regulator for phase compensation.					
Creg2	Capacitor to stabilize drain electric potential of Q4.					
D1	Diode for preventing backflow from regulator.					
D2	Diode for preventing voltage more than VDD pin voltage from applying to OV pin.					
$Q_1 \cdot Q_2$	Nch MOS FET to control discharging current.					
Q3	Nch MOS FET to control charging current.					
Q4	Power transistor of regulator.					
Q_5	FET for preventing voltage more than VDD pin voltage from applying to VM1 pin.					
Q6	FET for preventing voltage more than VDD pin voltage from applying to VM2 pin.					
$\boxed{Q_{OUT1} \cdot Q_{OUT2} \cdot Q_{OUT3} \cdot Q_{OUT4} \cdot Q_{OUT5}}$	FET for controling discharging switch during cell balance control.					

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

· 10 cells protection circuit

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.