

One-cell Li-ion/Li-polymer battery protection IC

MC3651 series

Outline

MC3651 series are protection IC with integrated MOS-FET for protection of the rechargeable Lithium-ion or Lithium-polymer battery. The overcharge, overdischarge and discharging and charging overcurrent protection of the rechargeable one-cell Lithium-ion or Lithium-polymer battery can be detected.

Features

(Unless otherwise specified,Ta=25°C)

1) Range and accuracy of detection/release voltage

· Overcharge detection voltage 4.15V to 4.50V, 5mV steps Accuracy ± 20 mV · Overcharge release voltage 4.00V to 4.35V ※1 Accuracy±50mV · Overdischarge detection voltage 2.00V to 3.00V ※2 Accuracy ± 100 mV Overdischarge release voltage 2.00V to 3.00V %2 Accuracy ± 100 mV · Discharging overcurrent detection voltage +20mV to +65mV, 1mV steps Accuracy±5mV (0.310A to 1.000A) (Discharge current limit)

Charging overcurrent detection voltage -65mV to -25mV, 5mV steps Accuracy±5mV
 (Charge current limit) (0.385A to 1.000A)

• Short detection voltage Selection from 0.19V, 0.36V Accuracy±50mV

- *1 Hysteresis voltagebetween Overcharge detection and release voltage is selectable from 0.10V/0.15V/0.20V/0.25V.
- *2 Please inquire to us about details of the setting of Overdischarge detection and release voltage.
- 2) Range of detection delay time

Overcharge detection delay time
 Overdischarge detection delay time
 Discharging overcurrent detection delay time
 Charging overcurrent detection delay time
 Selection from 8ms, 12ms, 16ms, 20ms, 48ms, 224ms
 Selection from 8.5ms, 16.5ms, 32.5ms
 Selection from 0.50ms, 0.75ms

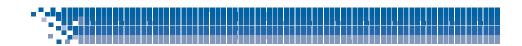
3) 0V battery charge function Selection from "Prohibition" or "Permission"

4) Low current consumption

Normal mode
 Stand-by mode
 Max. 0.1uA
 Max. 0.5uA
 (In case Overdischarge latch function "Enable")
 Max. 0.5uA
 (In case Overdischarge latch function "Disable")

5) MOS-FET

• Source to Source on state resistance Typ. $65m\Omega$ (@VDD=3.5V)

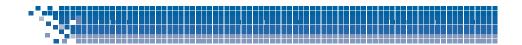

Mitsumi Electric CO.,LTD.

Semiconductor Business Division Strategy Engineering Department tel:+81-46-230-3470

All brand names, logos, product names, trade names and service names described here are trademarks or registered trademarks of their respective companies or organizations.

- Any products mentioned in this leaflet are subject to any modification in their appearance and others for improvements without prior notification
- The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

6) Package type


· PLP-4E

 $2.85 \times 1.25 \times 0.50$ [mm]

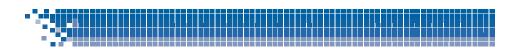
Pin explanations

PLP-4E	Pin No.	Symbol	Function
1 D 1 1 4 2 5 3	1	S1	Negative power supply and source of discharge MOS-FET terminal. Connect to the negative terminal of the battery.
	2	VDD	Positive power supply voltage input terminal. Connect to the positive terminal of the battery through R1.
	3	V-	Charger negative voltage input terminal. Connect to S2 terminal through R2.
	4	S2	Source terminal of charge MOS-FET. Connect to a negative power supply terminal of charger.
	-	D	Drain terminal of discharge and charge MOS-FET. Drain terminal must be open electrically.

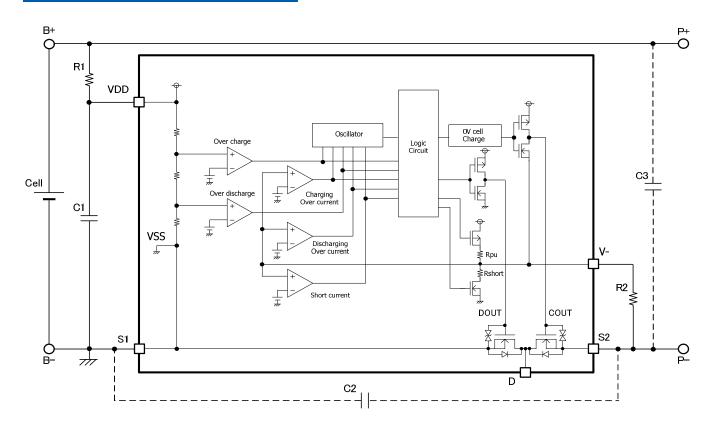
Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	VDD	-0.3	12	V
Pin voltage	V-	VDD-24	VDD+0.3	V
Drain-source voltage	VDSS	-	24	V
Source current	IS	-	1.2	Α
Storage temperature	Tstg	-40	125	$^{\circ}$

Recommended Operating Conditions


Parameter	Symbol	Min	Max	Unit
Operating ambient temperature	Topr	-40	85	$^{\circ}$
Operating voltage	Vop	1.5	5.5	V

Electrical characteristics


(Unless otherwise specified, $Ta=25^{\circ}$ C)

Parameter	Symbol	Note	Min	Тур	Max	Unit
		Current consumption				
Current consumption	Idd	VDD=3.6V, V-=0V	-	3.0	4.5	uA
Company as a second by	- · ·	Vdet2=Vrel2	-	-	0.1	uA
Current consumption at stand-by	Istb	Vdet2≠Vrel2	-	-	0.5	uA
		Detection/Release volta	ge			
Overcharge detection voltage	Vdet1		Typ-0.020	Vdet1	Typ+0.020	V
Overcharge release voltage	Vrel1		Typ-0.050	Vrel1	Typ+0.050	V
Overdischarge detection voltage	Vdet2		Typ-0.100	Vdet2	Typ+0.100	V
Overdischarge release voltage	Vrel2		Typ-0.100	Vrel2	Typ+0.100	V
Discharge Overcurrent detection voltage 1	Vdet3-1	VDD=4.5V	Typ-0.008	Vdet3-1	Typ+0.008	V
Discharge Overcurrent detection voltage 2	Vdet3-2	VDD=3.7V	Typ-0.008	Vdet3-2	Typ+0.008	V
Discharge Overcurrent detection voltage 3	Vdet3-3	VDD=3.5V	Typ-0.005	Vdet3-3	Typ+0.005	V
Discharge Overcurrent detection voltage 4	Vdet3-4	VDD=2.5V	Typ-0.008	Vdet3-4	Typ+0.008	V
Charge Overcurrent detection voltage	Vdet4	VDD=3.5V	Typ-0.005	Vdet4	Typ+0.005	V
Short detection voltage	Vshort	VDD=3.5V	Typ-0.050	Vshort	Typ+0.050	V
0V battery charge inhibition battery voltage	Vst		0.40	0.65	1.10	V
ov battery thange inhibition battery voltage			0.65	0.90	1.25	V
0V battery charge permission charger voltage	Vst		-	-	1.60	V
		Detection delay time				
Overcharge detection delay time	tVdet1		Typ*0.75	tVdet1	Typ*1.25	S
Overdischarge detection delay time	tVdet2		Typ*0.75	tVdet2	Typ*1.25	ms
Discharging overcurrent detection delay time	tVdet3		Typ*0.75	tVdet3	Typ*1.25	ms
Charging overcurrent detection delay time	tVdet4		Typ*0.75	tVdet4	Typ*1.25	ms
Short detection delay time	tVshort		0.36	0.50	0.84	ms
Short detection delay time	LVSHOLL		0.55	0.75	1.14	ms
		MOS-FET				
Drain current of cut off	IDSS	VDS=24V	-	-	1.0	uA
Source to source on state resistance 45	RSS(on)45	VDD=4.5V , Is=1.0A	53.0	62.0	71.0	mΩ
Source to source on state resistance 35	RSS(on)35	VDD=3.5V , Is=1.0A	56.0	65.0	74.0	mΩ
Source to source on state resistance 25	RSS(on)25	VDD=2.5V , Is=1.0A	59.0	74.0	91.0	mΩ
Body diode forward voltage	VSD	Is=1A	0.50	0.70	1.00	V

Block diagram / Typical application circuit

Symbol	Part	Min.	Тур.	Max.	Unit
R1	Resistor	-	33	470	Ω
C1/C2/C3	Capacitor	-	0.1	-	uF
R2	Resistor	-	2.7	-	kΩ

XApplication hints

The resistors that are inserted into each pin are to protect the IC. They help to remove ESD and latch-up damages. The capacitors help to reduce the effects of transient variations in voltage and electromagnetic waves, and to improve ESD tolerance of the IC. Please use either C2 or C3, or both of them by request of your application.

These values in the above figure are for example. Please choose appropriate values.