

CERAMIC RESONATORS

MHz/KHz Type Ceramic Resonators

Token Electronics Industry Co., Ltd.

Taiwan: No. 137, Sec. 1, Chung Shin Rd., Wu Ku Hsiang, Taipei Hsien, Taiwan, R.O.C

TEL: 886-2-2981 0109; FAX: 886-2-2988 7487

China: 12F, Zhongxing Industry Bld., Chuangye Rd., Nanshan District, Shenzhen, Guangdong

TEL: 86-755-2605 5363, 2605 5364; FAX: 86-755-2605 5365

Product Index

	MHz Type Ceramic Resonators	
0	ZTA Series	01
	ZTT Series - with Built-in Capacitor	05
	SMD ZTAC / ZTTC Series	80
	KHz Type Ceramic Resonators	
	ZTB Series	14
	Surface Mountable ZTBY Series	17
	ZTB 456F Series	20
	ZTB 500/503F Series	20
0	ZTB 912F Series	20

Notice: Specification Changed or Version Updated will be posted at irregular intervals. All Updated and Final Specifications, Please Confirm with TOKEN ELECTRONICS REPRESENITIVES.

rfq@token.com.tw

http://www.token.com.tw

CERAMIC RESONATORS $1.79 \sim 60.00 \text{ MHz}$

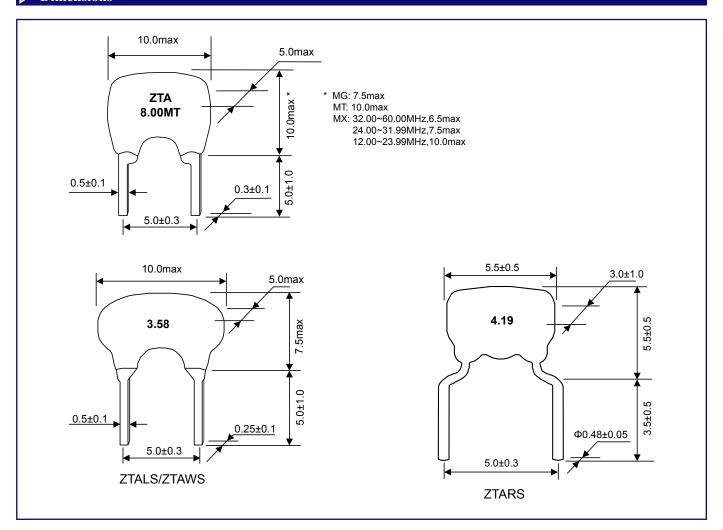
Token ZTA ceramic resonator is compatible to Murata CSA series

> Preview

Token ceramic resonators MHz (ZTA) series cover the frequency range of 1.79 MHz to 60.00 MHz with an initial frequency tolerance fo±0.5%, stability ±0.3% at operating temperature -20°C $\sim +80$ °C, and aging tolerance ± 0.3 %. The tight tolerance frees the design engineers from having to use Quartz Crystals higher cost components and still achieve desired performance and reliability targets.

Tolerance is the main key characteristics to evaluate for a resonator. The total tolerance is the addition of the initial tolerance, temperature tolerance and aging tolerance. Tighter tolerances are possible through design advancements, material refinement and manufacturing techniques. Token's design and material improve the temperature and aging characteristics of the resonator. Token's manufacturing ability sort to tighter initial tolerances.

Ceramic resonators implement the mechanical resonance of piezoelectric ceramics, that result in different vibration behaviors (modes) depending on the resonance frequency. Token ZTA series design utilizes this ceramic substrate by applying two metal electrodes evenly placed on both sides of the substrate. When voltage is applied, vibration of the ceramic substrate occurs between the electrodes. The thickness of the ceramic substrate determines the resonant frequency of the resonator.

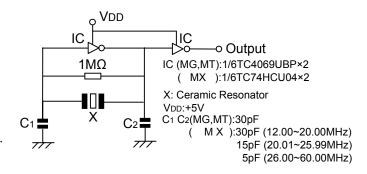

The ZTA series conform to the RoHS directive. Custom parts are available on request. Token will also produce devices outside these specifications to meet specific customer requirements, please contact our sales for more information.

Benefit Features:

- All ZTA are epoxy coated and completely washable.
- Resistant to damage from impact and vibration.
- Tape and reel package are both available.
- Excellent temperature stability ($\pm 0.3\%$).
- Low cost.

Dimensions

Part Numbe	Frequency Range (MHz)	Frequency Accuracy (at 25°C) (%)	Stability in Temperature (-20°C ~ +80°C) (%)	Operating Temperature (°C)	Aging For Ten Years (%)
ZTA***MG	1.79 ~ 6.00	± 0.5	± 0.3	- 20 ~ +80	± 0.3
ZTAWS***MG	1.79 ~ 6.00	± 0.5	± 0.3	- 20 ~ +80	± 0.3
ZTALS***MG	3.00 ~ 8.00	± 0.5	± 0.3	- 20 ~ +80	± 0.3
ZTARS***MG	3.00 ~ 10.00	± 0.5	± 0.3	- 20 ~ +80	± 0.3
ZTA***MT	6.00 ~ 13.00	± 0.5	± 0.3	- 20 ∼ +80	± 0.3
ZTA***MX	12.00 ~ 60.00	± 0.5	± 0.3	-20 ∼ +80	± 0.3



Oscillation Circuit for MOS IC

ZTA Selection Understanding Oscillation Circuit for MOS IC

Loading Capacitor (C1 & C2)

The stability of the oscillation circuit is mainly determined by the C1 & C2 values. If the load capacitance is too small, unstable oscillation will occur because of oscillation waveform distortion. If too high, a stop in oscillation can be expected. When comparing the same IC, oscillation circuits with lower frequencies require higher capacitance.

Feedback Resistor ($R = 1M\Omega$):

A Feedback Resistor is used to determine the oscillation circuit bias. The feedback resistance will contribute to instability if it is too large by reducing feedback. Conversely, if it is too small, increases in current will be realized thereby reducing gain. Recent developments in IC design allows for the integration of the feedback resistor in many cases.

Bias resistor (Rb optional):

A Bias Resistor can be utilized in the Ceramic Resonator Oscillation Circuit to change the bias point when a reduction in IC gain is required, or to suppress unstable oscillation. This may be especially considered when a 3 stage buffered IC, or TTL IC, is used. Token Engineers can help with the circuit design if needed.

Damping Resistor (Rd optional):

Abnormal harmonic oscillation can be suppressed using a dampening resistor. The dampening resistor and load capacitors work together as a low-pass filter to reduce gain in the MHz range of oscillation.

ZTA Resonator Optimum IC Evaluations

Tolerance is determined by the design of the resonator. However stability and correlation is determined by the IC evaluation. The microcontroller is evaluated with the ceramic resonators to determine the best possible circuit conditions to achieve stability and stable oscillation.

In addition, frequency correlation is measured to meet the tight initial frequency tolerance required. For the tight tolerance resonators the IC evaluation must be completed on the final circuit board layout. The final circuit boards provide the most accurate measurement of the frequency correlation.

This measurement will account for the effects of stray capacitance on the oscillation frequency. Once the correlation is determined the frequency of the resonator is adjusted to compensate for the correlation.

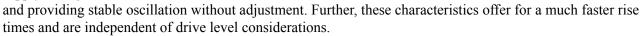
ZTA MHz Ceramic Resonators

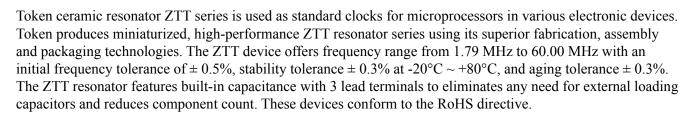
► How to Order

ZTA8.00MT Ρ 0 0

- Part Number
- 2 Package

Code	Package
P	Bulk
TR	Taping Reel


CERAMIC RESONATORS 1.79 ~ 60.00 MHz


Token Ceramic Resonator (ZTT) is compatible to Murata CST Compatible

Preview

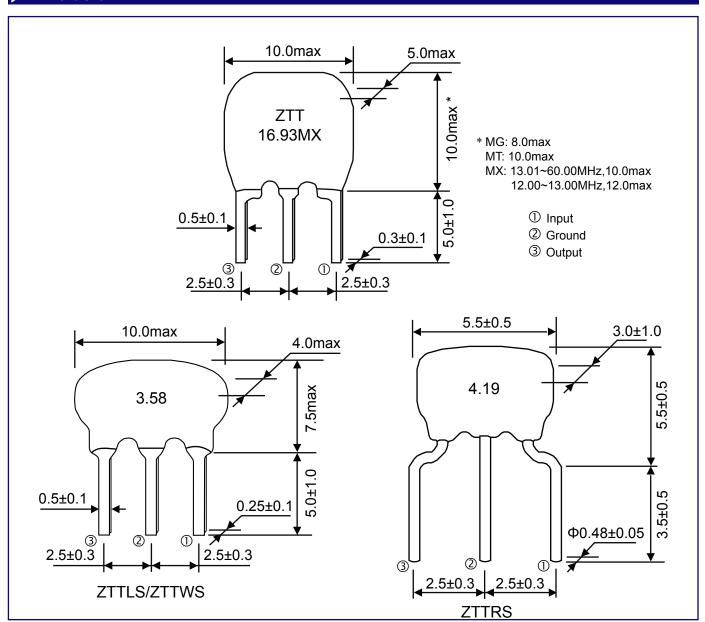
Ceramic resonators provide an attractive alternative to quartz crystals for oscillation frequency stabilization in many applications. when compared to quartz devices, ceramic resonators' easily mass production, low cost, mechanical ruggedness, and small size often outweigh the reduced precision to which frequencies can be controlled.

Additionally, ceramic resonators are better equipped to handle fluctuations in external circuit or power supply voltage due to their use of mechanical resonance

Application of ceramic resonators specific designs also available including tighter tolerances and frequency adjusted to requirements.

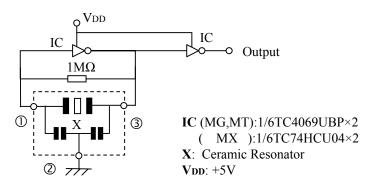
Please contact Token sales for more information.

Benefit Features:


- Built-in load capacitance reduced parts cost and mounting cost.
- Faster start-up time as compared to quartz crystals.
- Excellent temperature stability ($\pm 0.3\%$).
- High density mounting.
- Simplified circuit.
- Low cost.

Version 2010

Dimensions


Part Numbe	Frequency Range (MHz)	Frequency Accuracy (at 25°C) (%)	Stability in Temperature (-20°C ~ +80°C) (%)	Operating Temperature (°C)	Aging For Ten Years (%)
ZTT***MG	1.79 ~ 6.00	±0.5	±0.3	- 20 ~ +80	±0.3
ZTTWS***MG	1.79 ~ 6.00	±0.5	±0.3	- 20 ~ +80	±0.3
ZTTLS***MG	3.00 ~ 8.00	±0.5	±0.3	- 20 ∼ +80	±0.3
ZTTRS***MG	3.00 ~ 10.00	±0.5	±0.3	- 20 ~ +80	±0.3
ZTT***MT	6.00 ~ 13.00	±0.5	±0.3	- 20 ~ +80	±0.3
ZTT***MX	12.00 ~ 60.00	±0.5	±0.3	- 20 ∼ +80	±0.3

ZTT MHZ Ceramic Resonators

Test Circuit for MOS IC

Loading Capacitor (C1 & C2)

The stability of the oscillation circuit is mainly determined by the C1 & C2 values. If the load capacitance is too small, unstable oscillation will occur because of oscillation waveform distortion. If too high, a stop in oscillation can be expected. When comparing the same IC, oscillation circuits with lower frequencies require higher capacitance.

Feedback Resistor ($R = 1M\Omega$):

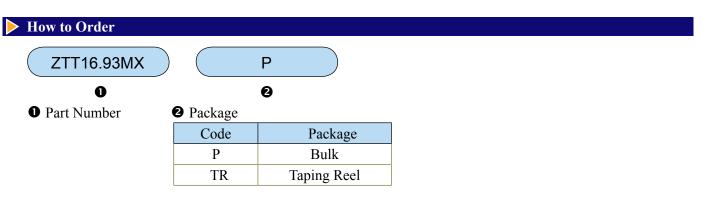
A Feedback Resistor is used to determine the oscillation circuit bias. The feedback resistance will contribute to instability if it is too large by reducing feedback. Conversely, if it is too small, increases in current will be realized thereby reducing gain. Recent developments in IC design allows for the integration of the feedback resistor in many cases.

Damping Resistor (Rd optional):

Abnormal harmonic oscillation can be suppressed using a dampening resistor. The dampening resistor and load capacitors work together as a low-pass filter to reduce gain in the MHz range of oscillation.

Bias resistor (Rb optional):

A Bias Resistor can be utilized in the Ceramic Resonator Oscillation Circuit to change the bias point when a reduction in IC gain is required, or to suppress unstable oscillation. This may be especially considered when a 3 stage buffered IC, or TTL IC, is used.


Token Engineers can help with the circuit design if needed.

(ZTT) Resonator Optimum - IC Evaluations

Tolerance is determined by the design of the resonator. However stability and correlation is determined by the IC evaluation. The microcontroller is evaluated with the ceramic resonators to determine the best possible circuit conditions to achieve stability and stable oscillation.

In addition, frequency correlation is measured to meet the tight initial frequency tolerance required. For the tight tolerance resonators the IC evaluation must be completed on the final circuit board layout. The final circuit boards provide the most accurate measurement of the frequency correlation.

This measurement will account for the effects of stray capacitance on the oscillation frequency. Once the

Back to 1st Page - Ceramic Resonators - ZTT

CERAMIC RESONATORS SMD $1.79 \sim 50.00 \text{ MHz}$

ZTAC/ZTTC Series is The Smallest Chip Ceramic Resonators (Murata CSAC/CSTC Compatible)

Preview

Previously, only higher cost quartz crystal resonators were considered for CAN bus application, due to tighter frequency tolerance requirements than for traditional automotive bus applications. Nowaday, Token utilizes the latest ceramic piezo technology freeing the design engineers from having to use these higher cost components and still achieve desired reliability and performance targets.

Token ZTAC and ZTTC series are the SMD ceramic resonators that meet the frequency tolerance $\pm 0.5\%$, temperature tolerance $\pm 0.3\% \sim \pm 0.4\%$, and aging

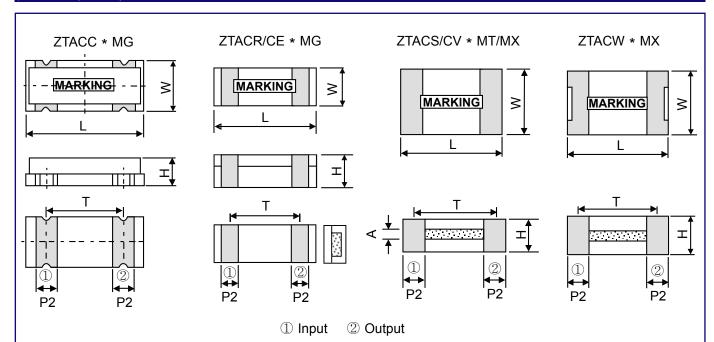
tolerance ±0.3%. The ZTAC and ZTTC covers the frequency range of 1.79 MHz to 50.00 MHz. ZTTC series features a built-in load capacitance. This feature eliminates any need for external loading capacitors and reduces component count, increases reliability and reduces size.

The ZTACE×MG (3.2 x 1.3 mm) with (max) profile 1.0 mm and ZTACW×MX (2.5 x 2.0 mm) with (max) profile 1.5 mm are the smallest resonators for their respective frequency ranges. All ZTAC and ZTTC series are surface mount devices (SMD) with operating temperature range is -20°C to +80°C.

Tolerance is the main key characteristics to evaluate for a resonator. The total tolerance is the addition of the initial tolerance, temperature tolerance and aging tolerance. Tighter tolerances are possible through design advancements, material refinement and manufacturing techniques. Token's design and material improve the temperature and aging characteristics of the resonator. Token's manufacturing ability sort to tighter initial tolerances.

Custom parts are available on request. Token will also produce devices outside these specifications to meet specific customer requirements, please contact Token sales for more information.

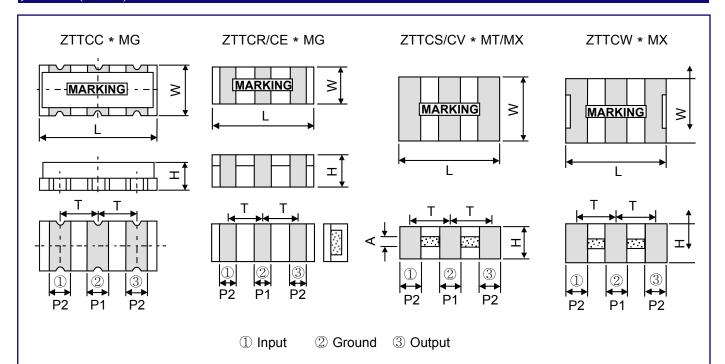
Benefit Features:


- High reliability chip resonator with high temperature withstanding ceramic case.
- Ultra-miniature size is suitable for compact equipment high mounting density.
- Low profile, Reflow solderable, Excellent solderability.

Applications:

- Car accessories.
- PDAs, PC peripherals.
- Camcorders, Digital cameras.

> SMD (ZTAC) Dimensions

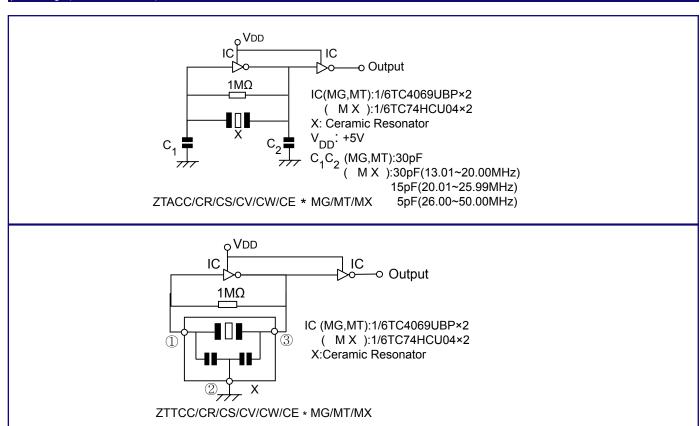


Dort Nymhar]	Dimensions (Unit: n	ensions (Unit: mm)			
Part Number	L	W	Н	P2	T		
ZTACC*MG	7.4±0.2	3.4±0.2	1.8±0.2	1.2±0.2	5.0±0.3		
ZTACR*MG	4.5±0.2	2.0±0.2	1.2max	0.8 ± 0.2	3.0±0.2		
ZTACE*MG	3.2±0.1	1.3±0.1	1.0max	0.4±0.1	2.4±0.1		
ZTACS*MT/MX	4.7±0.2	4.1±0.2	(1.2+A)±0.2	0.8±0.2	3.9±0.2		
ZTACV*MT/MX	3.7±0.2	3.1±0.2	(1.0+A)±0.2	0.7±0.2	3.0±0.2		
ZTACW*MX	2.5±0.2	2.0±0.2	1.5max	0.4±0.2	2.0±0.2		

Note: A stands for thickness of the ceramic element, which varies with the frequency. The range of the thickness is 0.1 to 0.7mm.

> SMD (ZTTC) Dimensions

Dort Number	Dimensions (Unit: mm)							
Part Number	L	W	Н	P1	P2S	T		
ZTTCC*MG	7.4 ± 0.2	3.4±0.2	1.8±0.2	1.2 ± 0.2	1.2±0.2	2.5±0.3		
ZTTCR*MG	4.5±0.2	2.0±0.2	1.2max	0.8±0.2	0.8±0.2	1.5±0.2		
ZTTCE*MG	3.2±0.1	1.3±0.1	1.0max	0.4 ± 0.1	0.4±0.1	1.2±0.1		
ZTTCS*MT/MX	4.7 ± 0.2	4.1±0.2	(1.2+A)±0.2	1.0 ± 0.2	0.8±0.2	1.95±0.2		
ZTTCV*MT/MX	3.7±0.2	3.1±0.2	(1.0+A)±0.2	0.9±0.2	0.7±0.2	1.5±0.2		
ZTTCW*MX	2.5±0.2	2.0±0.2	1.5max	0.5±0.2	0.4±0.2	1.0±0.2		


Note: A stands for thickness of the ceramic element, which varies with the frequency. The range of the thickness is 0.1 to 0.7mm.

Technical Characteristics

Part Number	Frequency Range (MHz)	Frequency Accuracy (%)	Stability in Temperature (-20°C ~ +80°C) (%)	Aging for Ten Years (%)
ZTACC*MG / ZTTCC*MG	1.79 ~ 8.00	± 0.5	± 0.3	± 0.3
ZTACR*MG / ZTTCR*MG	$4.00 \sim 8.00$	± 0.5	± 0.3	± 0.3
ZTACS*MT / ZTTCS*MT	6.00 ~ 13.00	± 0.5	± 0.4	± 0.3
ZTACV*MT / ZTTCV*MT	8.00 ~ 13.00	± 0.5	± 0.4	± 0.3
ZTACE*MG / ZTTCE*MG	8.00 ~ 13.00	± 0.5	± 0.4	± 0.3
ZTACS*MX / ZTTCS*MX	$13.01 \sim 50.00$	± 0.5	± 0.3	± 0.3
ZTACV*MX / ZTTCV*MX	$16.00 \sim 50.00$	± 0.5	± 0.3	± 0.3
ZTACW*MX / ZTTCW*MX	20.00 ~ 45.00	± 0.5	± 0.3	± 0.3

Chip (ZTAC/ZTTC) Test Circuit for MOS IC

► (ZTAC/ZTTC) Resonator Application - Oscillation Circuit for MOS IC

Feedback Resistor ($R = 1M\Omega$):

A Feedback Resistor is used to determine the oscillation circuit bias. The feedback resistance will contribute to instability if it is too large by reducing feedback. Conversely, if it is too small, increases in current will be realized thereby reducing gain. Recent developments in IC design allows for the integration of the feedback resistor in many cases.

Bias resistor (Rb optional):

A Bias Resistor can be utilized in the Ceramic Resonator Oscillation Circuit to change the bias point when a reduction in IC gain is required, or to suppress unstable oscillation. This may be especially considered when a 3 stage buffered IC, or TTL IC, is used.

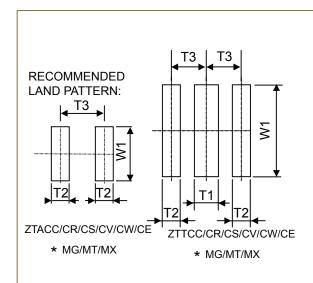
Damping Resistor (Rd optional):

Abnormal harmonic oscillation can be suppressed using a dampening resistor. The dampening resistor and load capacitors work together as a low-pass filter to reduce gain in the MHz range of oscillation.

Loading Capacitor (C1 & C2)

The stability of the oscillation circuit is mainly determined by the C1 & C2 values. If the load capacitance is too small, unstable oscillation will occur because of oscillation waveform distortion. If too high, a stop in oscillation can be expected. When comparing the same IC, oscillation circuits with lower frequencies require higher capacitance. Token Engineers can help with the circuit design if needed.

► (ZTAC/ZTTC) Resonator Optimization - IC Evaluations


Tolerance is determined by the design of the resonator. However stability and correlation is determined by the IC evaluation. The microcontroller is evaluated with the ceramic resonators to determine the best possible circuit conditions to achieve stability and stable oscillation.

In addition, frequency correlation is measured to meet the tight initial frequency tolerance required. For the tight tolerance resonators the IC evaluation must be completed on the final circuit board layout. The final circuit boards provide the most accurate measurement of the frequency correlation.

This measurement will account for the effects of stray capacitance on the oscillation frequency. Once the correlation is determined the frequency of the resonator is adjusted to compensate for the correlation.

Recommended Land Pattern

	Dimensions (Unit: mm)					
Part Number	T1	T2	Т3	W1		
ZTACC*MG		1.7±0.3	5.0±0.3	4.0±0.3		
ZTACR*MG		0.8±0.2	3.0±0.2	2.6±0.2		
ZTACS*MT/MX		0.8±0.2	3.9±0.2	5.0±0.2		
ZTACV*MT/MX		0.7±0.2	3.0±0.2	4.1±0.2		
ZTACW*MX		0.5±0.2	2.0±0.2	2.6±0.2		
ZTTCC*MG	1.5±0.3	1.7±0.3	2.5±0.3	4.0±0.3		
ZTTCR*MG	0.8±0.2	0.8±0.2	1.5±0.2	2.6±0.2		
ZTTCS*MT/MX	1.3±0.2	0.8±0.2	1.95±0.2	5.0±0.2		
ZTTCV*MT/MX	1.0±0.2	0.7±0.2	1.5±0.2	4.1±0.2		
ZTTCW*MX	0.5±0.2	0.5±0.2	1.0±0.2	2.6±0.2		

How to Order

ZTACC5.00MG

TR

0

0

- Part Number
- 2 Package

Code	Package
TR	Taping Reel

Ceramic Resonators 190 ~ 1250 KHz

KHz Ceramic Resonators (ZTB) are Murata CSB Compatible

Preview

The ZTB series ceramic resonators owe their development to Token's expert technologies and the application of mass production techniques typically utilized in the manufacture of piezoelectric ceramic components. Because of their consistent high quality and high mechanical Q, the ZTB series are ideally suited to remote control unit and microprocessor applications.

Token Ceramic Resonators KHz (ZTB) series is designed to provide the engineer with a rugged, relatively low frequency device in the frequency range of 190 kHz to 1,250 kHz. Initial frequency tolerance is \pm 0.5 % which

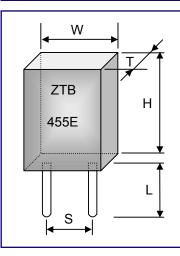
compares very favorably to the norminal $\pm 2\% \sim \pm 3\%$ requirements of one chip microprocessors. Stability and Aging Tolerance are tight to $\pm 0.3\%$.

The ZTB series conform to the RoHS directive. Token will also produce devices outside these specifications to meet customer requirements, with comprehensive application engineering and design support available for customers worldwide. Please contact our sales for more information.

Benefit Features:

- Oscillating circuits requiring no adjustment can be designed by utilizing these resonators in conjunction with transistors or appropriate ICs.
- The ZTB series is stable over a wide temperature range and with respect to long-term aging.
- Miniature and lightweight, standardized for use in low profile devices.
- Highly reliable design with excellent environmental resistance.
- The ZTB series comprises fixed, tuned, solid-state devices.
- Operation Temperature (-20°C~+80°C).
- Low cost.

Applications:


- Square-wave and sine-wave oscillators.
- Clock generator for microprocessors.
- Remote control systems.

14 of 22

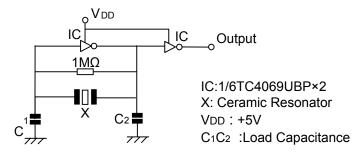
ZTB KHz Ceramic Resonators

Dimensions

Frequency Range (kHz)	W width	T thickness	H height	S lead space	L lead length
190~249	13.5	3.6	14.7	10.0	8.0
250~374	11.0	3.6	12.2	7.7	7.0
375~429	7.9	3.6	9.3	5.0	6.0
430~699	7.0	3.5	9.0	5.0	4.0(6.0)
700~1250	5.1	2.2	6.3	2.5	4.0

Part	Frequency	Resonant	Stability in	Aging For	Load Capac	itance (pF)
Number	Accuracy (at 25°C)	Impedance (Ω)	Temperature (-20°C~+80°C)(%)	10 Years (%)	C1	C2
ZTB82 ~ ZTB189 *	±2kHz	≤20	±0.3	±0.3	/	/
ZTB190D ~ ZTB249D	±1kHz	≤20	±0.3	±0.3	330	470
ZTB250D ~ ZTB374D	±1kHz	≤20	±0.3	±0.3	220	470
ZTB375P ~ ZTB429P	±2kHz	≤20	±0.3	±0.3	120	470
ZTB430E ~ ZTB509E	±2kHz	≤20	±0.3	±0.3	100	100
ZTB510P ~ ZTB699P	±2kHz	≤30	±0.3	±0.3	100	100
ZTB700J ~ ZTB999J	±0.5%	≤70	±0.3	±0.3	100	100
ZTB1000J ~ ZTB1250J	±0.5%	≤100	±0.3	±0.3	100	100

^{*} Note : ZTB82 ~ ZTB189 series is new products of custom design.



ZTB KHz Ceramic Resonators

KHz (ZTB) Resonator Selection - Test Circuit for MOS IC

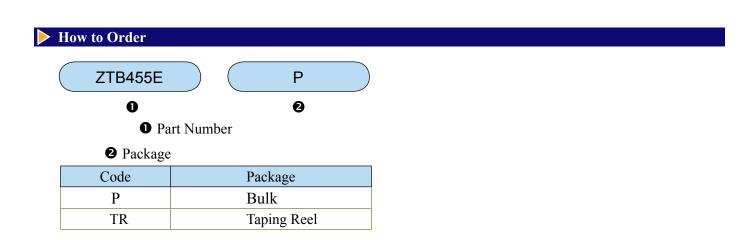
Loading Capacitor (C1 & C2)

The stability of the oscillation circuit is mainly determined by the C1 & C2 values. If the load capacitance is too small, unstable oscillation will occur because of oscillation waveform distortion. If too high, a stop in oscillation can be expected. When comparing the same IC, oscillation circuits with lower frequencies

require higher capacitance. Token Engineers can help with the circuit design if needed.

Feedback Resistor ($R = 1M\Omega$):

A Feedback Resistor is used to determine the oscillation circuit bias. The feedback resistance will contribute to instability if it is too large by reducing feedback. Conversely, if it is too small, increases in current will be realized thereby reducing gain. Recent developments in IC design allows for the integration of the feedback resistor in many cases.


KHz (ZTB) Resonator Optimum - IC Evaluations

Due to the properties of ceramic resonators, IC matching must be studied and performed to satisfy oscillation conditions.

Tolerance is determined by the design of the resonator. However stability and correlation is determined by the IC evaluation. The microcontroller is evaluated with the ceramic resonators to determine the best possible circuit conditions to achieve stability and stable oscillation.

In addition, frequency correlation is measured to meet the tight initial frequency tolerance required. For the tight tolerance resonators the IC evaluation must be completed on the final circuit board layout. The final circuit boards provide the most accurate measurement of the frequency correlation.

This measurement will account for the effects of stray capacitance on the oscillation frequency. Once the correlation is determined the frequency of the resonator is adjusted to compensate for the correlation.

Back to 1st Page - Ceramic Resonators - ZTB

Surface Mountable Ceramic Resonators

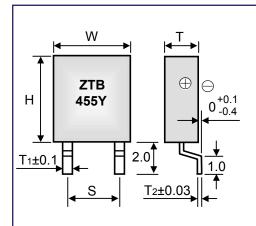
Surface Mountable Formed Leads Ceramic Resonators (Murata CSBF Compatible)

Preview

Token manufactures a broad range of high quality Ceramic Resonators covering both the KHz and Mhz frequency ranges and a full range of industry standard Through Hole and Surface Mount resonators both with and without internal capacitors. The high quality and extensive coverage of this product line allows optimum design of almost any oscillating circuit.wide variety of applications.

The surface mountable Ceramic resonators (ZTBY) is one of ZTB device series with the frequency range of 375 kHz to 1,250 kHz. Initial frequency tolerance

is \pm 0.5% which compares very favorably to the norminal \pm 2% \sim \pm 3% requirements of one chip microprocessors. Stability and Aging Tolerance narrows to \pm 0.3%. The ZTBY Resonator provides reliable start up and stable oscillation in microprocessor circuits across a wide variety of applications.


The ZTBY Ceramic resonators stand between quartz crystal oscillators and LC/RC oscillators in regard to accuracy but are considerably smaller, require no adjustments, have improved start-up times, and are low in cost. The ZTBY oscillation is dependent upon mechanical resonance associated with their piezoelectric crystalline structure and utilizes the area vibration mode of the piezoelectric element.

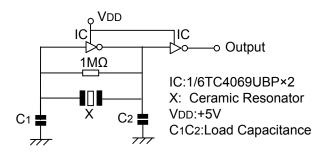
Token ZTBY resonators conform to the RoHS directive. Application of specific designs also available including different tighter tolerances specification adjusted to frequency requirements. Please contact our sales for more information.

ZTBY 375-250 KHz Ceramic Resonators

▶ Dimensions (Unit: mm Tolerance: ±0.3mm)

Frequency Range (kHz)	W width	T thickness	H height	S lead space	T ₁	T ₂
375~429	8.0	3.5	9.0	5.0	1.0	0.15
430~509	7.5	3.3	8.5	5.0	1.1	0.15
510~699	7.0	3.0	8.5	5.0	1.1	0.15
700~1250	5.0	2.2	6.0	2.5	0.8	0.12

Part	Frequency Accuracy	Resonant Stability in Impedance Temperature	Stability in Temperature	Aging For 10 Years	Load Capacitance (pF)	
Number	(at 25°C)	(Ω)	(-20°C~+80°C)(%)	(%)	C1	C2
ZTB375 ~ 429Y	±2kHz	≤20	±0.3	±0.3	120	470
ZTB430 ~ 509Y	±2kHz	≤20	±0.3	±0.3	100	100
ZTB510 ~ 699Y	±2kHz	≤30	±0.3	±0.3	100	100
ZTB700 ~ 999Y	±0.5%	≤70	±0.3	±0.3	100	100
ZTB1000 ~ 1250Y	±0.5%	≤100	±0.3	±0.3	100	100



ZTBY 375-250 KHz Ceramic Resonators

► (ZTBY) Resonator Selection - Test Circuit for MOS IC

Loading Capacitor (C1 & C2)

The stability of the oscillation circuit is mainly determined by the C1 & C2 values. If the load capacitance is too small, unstable oscillation will occur because of oscillation waveform distortion. If too high, a stop in oscillation can be expected. When comparing the same IC, oscillation circuits with lower frequencies require higher capacitance.

Feedback Resistor ($R = 1M\Omega$):

A Feedback Resistor is used to determine the oscillation circuit bias. The feedback resistance will contribute to instability if it is too large by reducing feedback. Conversely, if it is too small, increases in current will be realized thereby reducing gain. Recent developments in IC design allows for the integration of the feedback resistor in many cases.

Token Engineers can help with the circuit design if needed.

(ZTBY) Resonator Optimization - IC Evaluations

Tolerance is determined by the design of the resonator. However stability and correlation is determined by the IC evaluation. The microcontroller is evaluated with the ceramic resonators to determine the best possible circuit conditions to achieve stability and stable oscillation.

In addition, frequency correlation is measured to meet the tight initial frequency tolerance required. For the tight tolerance resonators the IC evaluation must be completed on the final circuit board layout. The final circuit boards provide the most accurate measurement of the frequency correlation.

This measurement will account for the effects of stray capacitance on the oscillation frequency. Once the correlation is determined the frequency of the resonator is adjusted to compensate for the correlation.

How to Orders

- Part Number
- 2 Center Frequency (KHz)
- **3** SMD type
- Packaging

Code	Package	
P	Bulk	
TR	Taping Reel	

Back to 1st Page - Ceramic Surface Mountable Ceramic Resonators

Ceramic Resonators (ZTB456/500/503/912F)

Optimum Ceramic Resonator Selection of ZTB456/500/503/912F Oscillation

Preview

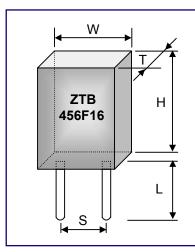
Optimum Ceramic Resonator selection of Token ZTB456/ 500/503/912F oscillation parameters make possible according to applications. The ZTB456/500/503/912F series provide reliable start up and stable oscillation in microprocessor circuits across a wide variety of applications.

The ZTB 456F Multiplexers Series is designed to provide frequency modulation for HI-FI stereo application. These Ceramic Resonators are offered in the frequency accuracy $19kHz \pm 38Hz$ and $456kHz \pm 2kHz$ with various applicable IC. The ZTB912F Multiplexers Series is specially designed

to provide frequency modulation for HI-FI automobile stereo application. The ZTB 500/503F Series is designed for TV horizontal synthesizer circuits. These Ceramic Resonators are offered in the following frequency accuracy with applicable IC. All ZTB456/500/503/912F are Murata Compatible CSB456/503/912F.

Application of ceramic resonators specific designs also available including tighter tolerance specifications adjusted to frequency requirements. Products conform to the RoHS directive.

Token will also produce devices outside these specifications to meet customer requirements, with comprehensive application engineering and design support available for customers worldwide.


Benefit Features:

- Highly reliable design with excellent environmental resistance.
- Standardized for use in low profile devices.
- Low cost.

ZTB 456/500/503/912F RESONATORS

Dimensions (Unit: mm Tolerance: ±0.3mm)

Туре	ZTB 456 / 500 / 503F	ZTB 912F
W (width)	7.0	5.0
T (thickness)	3.5	2.2
H (height)	9.0	6.0
S (lead space)	5.0	2.5
L (lead length)	4.0	4.0

Part Number	Frequency Accuracy	Applicable IC	
ZTB456F11	$19.000 \text{ kHz} \pm 38 \text{ Hz}$	LA3430	SANYO
ZTB456F15	19.000 kHz ± 38 Hz	LA1832	SANYO
ZTB456F16	$19.000 \text{ kHz} \pm 38 \text{ Hz}$	TA8122AN	TOSHIBA
ZTB456F18	$19.000 \text{ kHz} \pm 38 \text{ Hz}$	TA8132N	TOSHIBA
ZTB456F33	$456 \text{ kHz} \pm 2 \text{ Hz}$	LA2232	SANYO
ZTB480E14	480+0.2%, -0.4%	TC31018P	TOSHIBA
ZTB500F2	$500.0 \text{ kHz} \pm 2 \text{ kHz}$	μPC1401C	NEC
ZTB500F9	$500.0 \text{ kHz} \pm 2 \text{ kHz}$	M51308SP	MITSUBISH
ZTB500F25	$15.680 \text{ kHz} \pm 0.4\%$	LA7680	SANYO
ZTB500F40	$15.680 \text{ kHz} \pm 0.4\%$	TA8691N	TOSHIBA
ZTB503F2	503.5 kHz ±2 kHz	μPC1401C	NEC
ZTB503F5	$504.5 \text{ kHz} \pm 2 \text{ kHz}$	LA7620	SANYO
ZTB503F10	$15.734 \text{ kHz} \pm 0.5\%$	TA7777P	TOSHIBA
ZTB503F12	$503.5 \text{ kHz} \pm 2 \text{ kHz}$	LDA3586N	THOMSON
ZTB503F15	$505.1 \text{ kHz} \pm 2 \text{ kHz}$	LA7650	SANYO
ZTB503F30	$503.5 \text{ kHz} \pm 1.5 \text{ kHz}$	TA8654AN	TOSHIBA
ZTB503F38	$15.734 \text{ kHz} \pm 62 \text{ kHz}$	AN5302	MATSUSHITA
ZTB912F	$923.0 \text{ kHz} \pm 0.3\%$	LA1780	SANYO
ZTB912F101	$918.5 \text{ kHz} \pm 0.3\%$	AN7291	MATSUSHITA
ZTB912F104	$925.0 \text{ kHz} \pm 0.3\%$	LA1867NM	SANYO

ZTB 456/500/503/912F RESONATORS

► How to Orders

ZTB456F16 Р 0 0

• Part Number

Package

Code	Package
P	Bulk
TR	Taping Reel